• Course
  • Vendor

Learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azure data platform technologies.

  • Course Start Date: 2025-07-14
  • Time: 09:00:00 - 17:00:00
  • Duration: 4 days 09:00 AM - 05:00 PM
  • Location: Virtual
  • Delivery Method(s): Virtual Instructor Led

Course Outline

Lessons

Learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azure data platform technologies.

In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azure data platform technologies. Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics.

WHO SHOULD ATTEND?

The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure.

WHAT YOU'LL LEARN

Students will learn to,

  • Explore compute and storage options for data engineering workloads in Azure
  • Design and Implement the serving layer
  • Understand data engineering considerations
  • Run interactive queries using serverless SQL pools
  • Explore, transform, and load data into the Data Warehouse using Apache Spark
  • Perform data Exploration and Transformation in Azure Databricks
  • Ingest and load Data into the Data Warehouse
  • Transform Data with Azure Data Factory or Azure Synapse Pipelines
  • Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines
  • Optimize Query Performance with Dedicated SQL Pools in Azure Synapse
  • Analyze and Optimize Data Warehouse Storage
  • Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link
  • Perform end-to-end security with Azure Synapse Analytics
  • Perform real-time Stream Processing with Stream Analytics
  • Create a Stream Processing Solution with Event Hubs and Azure Databricks
  • Build reports using Power BI integration with Azure Synapse Analytics
  • Perform Integrated Machine Learning Processes in Azure Synapse Analytics

 

COURSE OUTLINE

Module 1: Explore compute and storage options for data engineering workloads

This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration.

Lessons

  • Introduction to Azure Synapse Analytics
  • Describe Azure Databricks
  • Introduction to Azure Data Lake storage
  • Describe Delta Lake architecture
  • Work with data streams by using Azure Stream Analytics

After completing this module, students will be able to:

  • Describe Azure Synapse Analytics
  • Describe Azure Databricks
  • Describe Azure Data Lake storage
  • Describe Delta Lake architecture
  • Describe Azure Stream Analytics

Module 2: Design and implement the serving layer

This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory.

Lessons

  • Design a multidimensional schema to optimize analytical workloads
  • Code-free transformation at scale with Azure Data Factory
  • Populate slowly changing dimensions in Azure Synapse Analytics pipelines

After completing this module, students will be able to:

  • Design a star schema for analytical workloads
  • Populate a slowly changing dimensions with Azure Data Factory and mapping data flows

Module 3: Data engineering considerations for source files

This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake.

Lessons

  • Design a Modern Data Warehouse using Azure Synapse Analytics
  • Secure a data warehouse in Azure Synapse Analytics

After completing this module, students will be able to:

  • Design a Modern Data Warehouse using Azure Synapse Analytics
  • Secure a data warehouse in Azure Synapse Analytics

Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools

In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs).

Lessons

  • Explore Azure Synapse serverless SQL pools capabilities
  • Query data in the lake using Azure Synapse serverless SQL pools
  • Create metadata objects in Azure Synapse serverless SQL pools
  • Secure data and manage users in Azure Synapse serverless SQL pools

After completing this module, students will be able to:

  • Understand Azure Synapse serverless SQL pools capabilities
  • Query data in the lake using Azure Synapse serverless SQL pools
  • Create metadata objects in Azure Synapse serverless SQL pools
  • Secure data and manage users in Azure Synapse serverless SQL pools

Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark

This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool.

Lessons

  • Understand big data engineering with Apache Spark in Azure Synapse Analytics
  • Ingest data with Apache Spark notebooks in Azure Synapse Analytics
  • Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics
  • Integrate SQL and Apache Spark pools in Azure Synapse Analytics

After completing this module, students will be able to:

  • Describe big data engineering with Apache Spark in Azure Synapse Analytics
  • Ingest data with Apache Spark notebooks in Azure Synapse Analytics
  • Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics
  • Integrate SQL and Apache Spark pools in Azure Synapse Analytics

Module 6: Data exploration and transformation in Azure Databricks

This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data.

Lessons

  • Describe Azure Databricks
  • Read and write data in Azure Databricks
  • Work with DataFrames in Azure Databricks
  • Work with DataFrames advanced methods in Azure Databricks

After completing this module, students will be able to:

  • Describe Azure Databricks
  • Read and write data in Azure Databricks
  • Work with DataFrames in Azure Databricks
  • Work with DataFrames advanced methods in Azure Databricks

Module 7: Ingest and load data into the data warehouse

This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion.

Lessons

  • Use data loading best practices in Azure Synapse Analytics
  • Petabyte-scale ingestion with Azure Data Factory

After completing this module, students will be able to:

  • Use data loading best practices in Azure Synapse Analytics
  • Petabyte-scale ingestion with Azure Data Factory

Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines

This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks.

Lessons

  • Data integration with Azure Data Factory or Azure Synapse Pipelines
  • Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines

After completing this module, students will be able to:

  • Perform data integration with Azure Data Factory
  • Perform code-free transformation at scale with Azure Data Factory

Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines

In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines.

Lessons

  • Orchestrate data movement and transformation in Azure Data Factory

After completing this module, students will be able to:

  • Orchestrate data movement and transformation in Azure Synapse Pipelines

Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse

In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance.

Lessons

  • Optimize data warehouse query performance in Azure Synapse Analytics
  • Understand data warehouse developer features of Azure Synapse Analytics

After completing this module, students will be able to:

  • Optimize data warehouse query performance in Azure Synapse Analytics
  • Understand data warehouse developer features of Azure Synapse Analytics

Module 11: Analyze and Optimize Data Warehouse Storage

In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations.

Lessons

  • Analyze and optimize data warehouse storage in Azure Synapse Analytics

After completing this module, students will be able to:

  • Analyze and optimize data warehouse storage in Azure Synapse Analytics

Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link

In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless.

Lessons

  • Design hybrid transactional and analytical processing using Azure Synapse Analytics
  • Configure Azure Synapse Link with Azure Cosmos DB
  • Query Azure Cosmos DB with Apache Spark pools
  • Query Azure Cosmos DB with serverless SQL pools

After completing this module, students will be able to:

  • Design hybrid transactional and analytical processing using Azure Synapse Analytics
  • Configure Azure Synapse Link with Azure Cosmos DB
  • Query Azure Cosmos DB with Apache Spark for Azure Synapse Analytics
  • Query Azure Cosmos DB with SQL serverless for Azure Synapse Analytics

Module 13: End-to-end security with Azure Synapse Analytics

In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools.

Lessons

  • Secure a data warehouse in Azure Synapse Analytics
  • Configure and manage secrets in Azure Key Vault
  • Implement compliance controls for sensitive data

After completing this module, students will be able to:

  • Secure a data warehouse in Azure Synapse Analytics
  • Configure and manage secrets in Azure Key Vault
  • Implement compliance controls for sensitive data

Module 14: Real-time Stream Processing with Stream Analytics

In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput.

Lessons

  • Enable reliable messaging for Big Data applications using Azure Event Hubs
  • Work with data streams by using Azure Stream Analytics
  • Ingest data streams with Azure Stream Analytics

After completing this module, students will be able to:

  • Enable reliable messaging for Big Data applications using Azure Event Hubs
  • Work with data streams by using Azure Stream Analytics
  • Ingest data streams with Azure Stream Analytics

Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks

In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams.

Lessons

  • Process streaming data with Azure Databricks structured streaming

After completing this module, students will be able to:

  • Process streaming data with Azure Databricks structured streaming

Module 16: Build reports using Power BI integration with Azure Synapse Analytics

In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI.

Lessons

  • Create reports with Power BI using its integration with Azure Synapse Analytics

After completing this module, students will be able to:

  • Create reports with Power BI using its integration with Azure Synapse Analytics

Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics

This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI.

Lessons

  • Use the integrated machine learning process in Azure Synapse Analytics

After completing this module, students will be able to:

  • Use the integrated machine learning process in Azure Synapse Analytics

 

LABS OUTLINE

Lab : Explore compute and storage options for data engineering workloads

  • Combine streaming and batch processing with a single pipeline
  • Organize the data lake into levels of file transformation
  • Index data lake storage for query and workload acceleration

Lab : Designing and Implementing the Serving Layer

  • Design a star schema for analytical workloads
  • Populate slowly changing dimensions with Azure Data Factory and mapping data flows

Lab : Data engineering considerations

  • Managing files in an Azure data lake
  • Securing files stored in an Azure data lake

Lab : Run interactive queries using serverless SQL pools

  • Query Parquet data with serverless SQL pools
  • Create external tables for Parquet and CSV files
  • Create views with serverless SQL pools
  • Secure access to data in a data lake when using serverless SQL pools
  • Configure data lake security using Role-Based Access Control (RBAC) and Access Control List

Lab : Explore, transform, and load data into the Data Warehouse using Apache Spark

  • Perform Data Exploration in Synapse Studio
  • Ingest data with Spark notebooks in Azure Synapse Analytics
  • Transform data with DataFrames in Spark pools in Azure Synapse Analytics
  • Integrate SQL and Spark pools in Azure Synapse Analytics

Lab : Data Exploration and Transformation in Azure Databricks

  • Use DataFrames in Azure Databricks to explore and filter data
  • Cache a DataFrame for faster subsequent queries
  • Remove duplicate data
  • Manipulate date/time values
  • Remove and rename DataFrame columns
  • Aggregate data stored in a DataFrame

Lab : Ingest and load Data into the Data Warehouse

  • Perform petabyte-scale ingestion with Azure Synapse Pipelines
  • Import data with PolyBase and COPY using T-SQL
  • Use data loading best practices in Azure Synapse Analytics

Lab : Transform Data with Azure Data Factory or Azure Synapse Pipelines

  • Execute code-free transformations at scale with Azure Synapse Pipelines
  • Create data pipeline to import poorly formatted CSV files
  • Create Mapping Data Flows

Lab : Orchestrate data movement and transformation in Azure Synapse Pipelines

  • Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines

Lab : Optimize Query Performance with Dedicated SQL Pools in Azure Synapse

  • Understand developer features of Azure Synapse Analytics
  • Optimize data warehouse query performance in Azure Synapse Analytics
  • Improve query performance

Lab : Analyze and Optimize Data Warehouse Storage

  • Check for skewed data and space usage
  • Understand column store storage details
  • Study the impact of materialized views
  • Explore rules for minimally logged operations

Lab : Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link

  • Configure Azure Synapse Link with Azure Cosmos DB
  • Query Azure Cosmos DB with Apache Spark for Synapse Analytics
  • Query Azure Cosmos DB with serverless SQL pool for Azure Synapse Analytics

Lab : End-to-end security with Azure Synapse Analytics

  • Secure Azure Synapse Analytics supporting infrastructure
  • Secure the Azure Synapse Analytics workspace and managed services
  • Secure Azure Synapse Analytics workspace data

Lab : Real-time Stream Processing with Stream Analytics

  • Use Stream Analytics to process real-time data from Event Hubs
  • Use Stream Analytics windowing functions to build aggregates and output to Synapse Analytics
  • Scale the Azure Stream Analytics job to increase throughput through partitioning
  • Repartition the stream input to optimize parallelization

Lab : Create a Stream Processing Solution with Event Hubs and Azure Databricks

  • Explore key features and uses of Structured Streaming
  • Stream data from a file and write it out to a distributed file system
  • Use sliding windows to aggregate over chunks of data rather than all data
  • Apply watermarking to remove stale data
  • Connect to Event Hubs read and write streams

Lab : Build reports using Power BI integration with Azure Synapse Analytics

  • Integrate an Azure Synapse workspace and Power BI
  • Optimize integration with Power BI
  • Improve query performance with materialized views and result-set caching
  • Visualize data with SQL serverless and create a Power BI report

Lab : Perform Integrated Machine Learning Processes in Azure Synapse Analytics

  • Create an Azure Machine Learning linked service
  • Trigger an Auto ML experiment using data from a Spark table
  • Enrich data using trained models
  • Serve prediction results using Power BI

Cancellation Policy

We require 16 calendar days notice to reschedule or cancel any registration. Failure to provide the required notification will result in 100% charge of the course. If a student does not attend a scheduled course without prior notification it will result in full forfeiture of the funds and no reschedule will be allowed. Within the required notification period, only student substitutions will be permitted. Reschedules are permitted at anytime with 16 or more calendar days notice. Enrollments must be rescheduled within six months of the cancel date or funds on account will be forfeited.

Training Location

Online Classroom
your office

your city, your province
your country   

About Global Knowledge

x

Global Knowledge is the world's leading learning services and professional development solutions provider. We deliver learning solutions to support customers as they adapt to key business transformations and technological advancements that drive the way that organizations around the world differentiate themselves and thrive. Our learning programs, whether designed for a global organization or an individual professional, help businesses close skills gaps and foster an environment of continuous talent development.

Training Provider Rating

This vendor has an overall average rating of 4.38 out of 5 based on 431 reviews.

I would never take another course that starts at 11AM and goes to 9PM again. The way the course was laid out really took away from ... Read more
x

I would never take another course that starts at 11AM and goes to 9PM again. The way the course was laid out really took away from the capturing of what was presented as it was 5-6 hours of watching a screen before getting to the actual labs. There has to be a better way to lay out this particular course. In my previous course, the lectures were broken up by labs which worked out fantastic and kept you engaged in the course. There were days when in order to actually complete the labs, would go over the 9PM day end time frame. Was able to get the primary labs done, but if you want to get all the content completed, you cannot complete it in the window of this course, you will need to come back on your own time.

No comment
No comment
Instructor was great
No comment
No comment
No comment
No comment
No comment
No comment
No comment
No comment
No comment
No comment
No comment
No comment
No comment
No comment
No comment
Wasn’t as advanced as I thought it would be. There was an issue when the day my course was the first time they used a new platfo ... Read more
x

Wasn’t as advanced as I thought it would be. There was an issue when the day my course was the first time they used a new platform.. from adobe to something called zoom; I had to call support line cause it stated our instructor wasn’t present. Thankfully I called cause everyone online was in the adobe virtual classroom waiting for what looked like a teacher who didn’t show up for class (IT didn’t get anything resolved until 10mins after start time). I felt like he was really getting hung up on very basic knowledge for the first half of the course (talking about how to create tabs and drag formulas as an example). I completed files a few times before he was done explaining. There was a scheduled fire drill for them (roughly 30mins)that also cut into our time, which wasn’t deducted from the hour lunch break or the two, fifteen min breaks. I also really wish he touched base more on the automating workbook functions portion which we barely did. I'm happy there were/are those study guides (learning videos) and exams to take on my own time that I hope after I've had the class are still available for me to learn from.

Course Reviews

No Reviews Yet