• Course
  • Vendor

Build, train, and deploy machine learning (ML) models.

  • Course Start Date: 2025-06-16
  • Time: 08:30:00 - 16:30:00
  • Duration: 3 days 08:30 AM - 04:30 PM
  • Location: Virtual
  • Delivery Method(s): Virtual Instructor Led

Course Outline

Pre-Requisites

Good understanding of DevOps and AWS architecture.

AWS Technical Essentials
DevOps Engineering on AWS
Practical Data Science with Amazon SageMaker

Lessons

This course builds upon and extends the DevOps practice prevalent in software development to build, train, and deploy machine learning (ML) models. The course stresses the importance of data, model, and code to successful ML deployments. It will demonstrate the use of tools, automation, processes, and teamwork in addressing the challenges associated with handoffs between data engineers, data scientists, software developers, and operations. The course will also discuss the use of tools and processes to monitor and take action when the model prediction in production starts to drift from agreed-upon key performance indicators.

WHAT YOU'LL LEARN

In this course, you will learn to:

  • Describe machine learning operations
  • Understand the key differences between DevOps and MLOps
  • Describe the machine learning workflow
  • Discuss the importance of communications in MLOps
  • Explain end-to-end options for automation of ML workflows
  • List key Amazon SageMaker features for MLOps automation
  • Build an automated ML process that builds, trains, tests, and deploys models
  • Build an automated ML process that retrains the model based on change(s) to the model code
  • Identify elements and important steps in the deployment process
  • Describe items that might be included in a model package, and their use in training or inference
  • Recognize Amazon SageMaker options for selecting models for deployment, including support for ML frameworks and built-in algorithms or bring-your-own-models
  • Differentiate scaling in machine learning from scaling in other applications
  • Determine when to use different approaches to inference
  • Discuss deployment strategies, benefits, challenges, and typical use cases
  • Describe the challenges when deploying machine learning to edge devices
  • Recognize important Amazon SageMaker features that are relevant to deployment and inference
  • Describe why monitoring is important
  • Detect data drifts in the underlying input data
  • Demonstrate how to monitor ML models for bias
  • Explain how to monitor model resource consumption and latency
  • Discuss how to integrate human-in-the-loop reviews of model results in production

OUTLINE

Day 1

Module 0: Welcome

  • Course introduction

Module 1: Introduction to MLOps

  • Machine learning operations
  • Goals of MLOps
  • Communication
  • From DevOps to MLOps
  • ML workflow
  • Scope
  • MLOps view of ML workflow
  • MLOps cases

Module 2: MLOps Development

  • Intro to build, train, and evaluate machine learning models
  • MLOps security
  • Automating
  • Apache Airflow
  • Kubernetes integration for MLOps
  • Amazon SageMaker for MLOps
  • Lab: Bring your own algorithm to an MLOps pipeline
  • Demonstration: Amazon SageMaker
  • Intro to build, train, and evaluate machine learning models
  • Lab: Code and serve your ML model with AWS CodeBuild
  • Activity: MLOps Action Plan Workbook

Day 2

Module 3: MLOps Deployment

  • Introduction to deployment operations
  • Model packaging
  • Inference
  • Lab: Deploy your model to production
  • SageMaker production variants
  • Deployment strategies
  • Deploying to the edge
  • Lab: Conduct A/B testing
  • Activity: MLOps Action Plan Workbook

Day 3

Module 4: Model Monitoring and Operations

  • Lab: Troubleshoot your pipeline
  • The importance of monitoring
  • Monitoring by design
  • Lab: Monitor your ML model
  • Human-in-the-loop
  • Amazon SageMaker Model Monitor
  • Demonstration: Amazon SageMaker Pipelines, Model Monitor, model registry, and Feature Store
  • Solving the Problem(s)
  • Activity: MLOps Action Plan Workbook

Module 5: Wrap-up

  • Course review
  • Activity: MLOps Action Plan Workbook
  • Wrap-up

WHO SHOULD ATTEND

This course is intended for any one of the following roles with responsibility for productionizing machine learning models in the AWS Cloud:

  • DevOps engineers
  • ML engineers
  • Developers/operations with responsibility for operationalizing ML models

Cancellation Policy

We require 16 calendar days notice to reschedule or cancel any registration. Failure to provide the required notification will result in 100% charge of the course. If a student does not attend a scheduled course without prior notification it will result in full forfeiture of the funds and no reschedule will be allowed. Within the required notification period, only student substitutions will be permitted. Reschedules are permitted at anytime with 16 or more calendar days notice. Enrollments must be rescheduled within six months of the cancel date or funds on account will be forfeited.

Training Location

Online Classroom
your office

your city, your province
your country   

About Global Knowledge

x

Global Knowledge is the world's leading learning services and professional development solutions provider. We deliver learning solutions to support customers as they adapt to key business transformations and technological advancements that drive the way that organizations around the world differentiate themselves and thrive. Our learning programs, whether designed for a global organization or an individual professional, help businesses close skills gaps and foster an environment of continuous talent development.

Training Provider Rating

This vendor has an overall average rating of 4.38 out of 5 based on 431 reviews.

I would never take another course that starts at 11AM and goes to 9PM again. The way the course was laid out really took away from ... Read more
x

I would never take another course that starts at 11AM and goes to 9PM again. The way the course was laid out really took away from the capturing of what was presented as it was 5-6 hours of watching a screen before getting to the actual labs. There has to be a better way to lay out this particular course. In my previous course, the lectures were broken up by labs which worked out fantastic and kept you engaged in the course. There were days when in order to actually complete the labs, would go over the 9PM day end time frame. Was able to get the primary labs done, but if you want to get all the content completed, you cannot complete it in the window of this course, you will need to come back on your own time.

No comment
No comment
Instructor was great
No comment
No comment
No comment
No comment
No comment
No comment
No comment
No comment
No comment
No comment
No comment
No comment
No comment
No comment
No comment
Wasn’t as advanced as I thought it would be. There was an issue when the day my course was the first time they used a new platfo ... Read more
x

Wasn’t as advanced as I thought it would be. There was an issue when the day my course was the first time they used a new platform.. from adobe to something called zoom; I had to call support line cause it stated our instructor wasn’t present. Thankfully I called cause everyone online was in the adobe virtual classroom waiting for what looked like a teacher who didn’t show up for class (IT didn’t get anything resolved until 10mins after start time). I felt like he was really getting hung up on very basic knowledge for the first half of the course (talking about how to create tabs and drag formulas as an example). I completed files a few times before he was done explaining. There was a scheduled fire drill for them (roughly 30mins)that also cut into our time, which wasn’t deducted from the hour lunch break or the two, fifteen min breaks. I also really wish he touched base more on the automating workbook functions portion which we barely did. I'm happy there were/are those study guides (learning videos) and exams to take on my own time that I hope after I've had the class are still available for me to learn from.

Course Reviews

No Reviews Yet